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When a piece of metal is placed above a coil carrying a high frequency current, the 
induced surface currents in the metal can provide a Lorentz force which can sup- 
port it against gravity; a t  the same time the heat produced by Joule dissipation can 
melt the metal. This is the process of ‘levitation melting’, which is a well-established 
technique in fundamental work-in physical and chemical metallurgy. Most theoretical 
studies of magnetic levitation have dealt only with solid conductors and sohaveavoided 
the interesting questions of interaction between the free surface, the magnetic field 
and the internal flow. These fluid dynamical aspects of the process are studied in this 

paper. 
A particular configuration that is studied in detail is a cylinder levitated by two 

equal parallel currents in phase; this is conceived as part of a toroidal configuration 
which avoids a difficulty of conventional configurations, viz the leakage of fluid 
through the ‘magnetic hole’ a t  a point on the metal surface where the surface 
tangential magnetic field vanishes. The equilibrium and stability of the solid circular 
cylinder is first considered; then the dynamics of the surface film when melting 
begins; then the equilibrium shape of the fully melted body (analysed by means of a 
general variational principle proved in 5 ) ;  and finally the dynamics of the interior 
flow, which, as argued in $2, is likely to be turbulent when the levitated mass is of the 
order of a few grams or greater. 

1. Introduction 
If a piece of metal is placed in an alternating magnetic field, electric currents will be 

induced, Lteracting with the magnetic field to produce a Lorentz force which can sup- 
port the metal against gravity. At the same time, the ohmic heating due to the induced 
currents can cause melting and result in a blob of liquid metal levitated by the applied 
field. This process, first suggested by Muck (1923) and reviewedt by Peifer (1965), has 
several advantages over the usual method of crucible melting: most obvious among 
these is that the liquid metal does not come into contact with a crucible wall so there is 
no danger of contamination, particularly by carbon and sulphur (in many metallurgical 
experiments see, for example, El-Kaddah & Robertson 1978 it  is important to pre- 
pare very pure specimens as even small traces of impurities can affect the physical 

t An excellent, although somewhat inaccessible, review of the literature up to 1975 is 
provided by Stephen (1975). 
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(a) ( b )  

FIGURE 1. (a) Typical axisymmetric levitation device (after Okress et al. 1952); ( b )  idealised two- 
dimensional levitation device with parallel wires at P and Q carrying equal currents I COB at, and 
image currents - I  cos ot at the image points P‘, Q’. 

properties); also the stirring of the liquid metal by the Lorentz force is an efficient 
method of mixing different metals in the production of alloys. 

Levitation melting has been achieved by many experimenters, for example, Okress 
et al. (1952). A typical levitation device is sketched in figure 1 a; the lower coil provides 
the main levitation force and the upper coil helps stabilise the metal against horizontal 
displacements. The frequency of the alternating current passed through the coils is 
typically of order lo4 to lo5 Hz and at  such high frequencies the metal behaves as a 
perfect conductor, confining the field penetration to a thin surface layer; the metal is in 
effect supported by the magnetic pressure distribution over its surface. 

Such levitation devices suffer from a number of problems. Firstly, in the configur- 
ation of figure 1 a, the (approximately tangential) magnetic field on the metal surface 
vanishes at the highest and lowest points. At the lowest point the metal will tend to 
leak through the ‘magnetic hole’, and in some experiments the lower end becomes 
elongated and drips. t This is generally the crucial factor in limiting the mass of liquid 
metal that can be levitated. The levitated metal is also subject to a number of in- 
stabilities, and may rotate or vibrate rapidly. In  spite of these difficulties, levitation 
melting has been successful for masses of order 100 g or more of various metals, and 
several commercial devices are available. 

Some metallurgical processes also involve what might be called partial magnetic 
levitation -parts of the surface of a body of liquid metal being supported by magnetic 
field and others resting on solid supports. For example in the continuous casting of 
aluminium, the vertical walls of a column of the liquid metal are supported magneti- 
cally, while the base of the column rests on a solid ingot which is gradually moveddown- 
wards as more metal solidifies a t  the interface (Moreau 1980). 

f This leakage is of course inhibited to some extent by surface tension. Moreover, various 
techniques have been tried, involving the use of two sets of coils carrying currents in time 
quadrature, for plugging the leak in a time-averaged manner (Zhezherin 1959). 
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Theoretical studies of levitation have so far dealt mainly with solid conduct0rs.t 
Piggot & Nix (1  966) have analyzed levitation of an infinitely long solid circular cylinder 
by a pair of equal and opposite alternating line currents, calculating stability bound- 
aries and the rate of heating, and comparing theoretical and experimental results. It 
was found that (as is in fact generally true) the levitation force increases with the 
frequency, eventually tending to the perfectly conducting limit, and that the rate of 
heating increases indefinitely with frequency. Brisley & Thornton (1963) have carried 
out similar calculations for a solid sphere levitated by a number of coaxial circular coils. 
Harris & Stephan (1975) (see also Stephan 1975) have carried out a wide range of 
experiments on complete and partial levitation using sodium surrounded by a silicone 
oil, the metal having a low melting point and the buoyancy of the oil reducing the 
necessary levitation force. Some of these experiments illustrate a dramatic ‘folding ’ 
instability of the metal surface, which has also been discussed by Zhezherin (1959). 
Volkov (1962) has analyzed the stability of a plane layer of liquid metal supported by a 
rapidly travelling magnetic field and has found that the fastest growing instabilities 
are those which extend along the magnetic field lines (i.e. the crests of the surface 
ripples running parallel to the magnetic field) but that these can be stabilised by 
sufficiently strong surface tension or magnetic field. 

Magnetic levitation of liquid metals presents three interacting problems - the 
determination of the magnetic field, the unknown free surface shape, and the internal 
fluid motion. Most previous theoretical work-in particular the studies of solid levi- 
tation - has avoided the difficulty of the unknown freesurface, and the closest approach 
to solving all three coupled problems seems to have been the paper by Volkov (1962), 
but even here only linearised departures from a simple equilibrium are involved. In  
the present paper we make some attempts at  solving the coupled problems but only in 
situations where one of the three effects can be neglected. For example, we may study 
the coupling between the free surface shape and the magnetic field under the assump- 
tion that internal fluid motion can be neglected, or we may calculate the internal fluid 
mofion under the assumption that the free surface shape is predetermined by strong 
surface tension. We consider in detail only two-dimensional problems, and in par- 
ticular, levitation of an infinitely long cylinder by two parallel line currents in phase 
(figure 1 b). This geometry$ (which can be thought of as approximating a torus of large 
major radius) eliminates the difficulty due to the neutral magnetic field point which 
must occur at  the bottom of a simply connected liquid-metal body in an axisymmetric 
configuration, and also enables us to use conformal transformation. We assume 
throughout that the alternating frequency is large, so that the magnetic field in the 
conductor is confined to a thin surface layer. The field lines outside the conductor are 
as sketched in the figure. 

Section 2 uses the approximate formulae of Sneyd (1979) to show that the effect of 
the Lorentz force can be thought of as a magnetic pressure (which provides the levi- 
tation force) and a surface source of vorticity (which will generate internal fluid motion). 
Estimates of the strength of the internal flow are also given and it is concluded that this 
flow is likely to be turbulent in situations of interest. As a prelude to the study of fluid 

t A parallel study to that reported here has been carried out by Mestel (1982) and cross- 
reference to this study will be made at appropriate points in the text. 

$ “he suggestion that a cylindrical configuration may be advantageous is not new ; it has been 
exploited in the so-called ‘boat crucible’ which levitates a cylinder of finite length (Peifer 1965). 
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levitation, $ 3  examines the levitation of a solid circular cylinder by parallel line 
currents in phase, calculating stability boundaries, and $4 examines the surface flow 
that develops during the initial stages of melting. Section 5 develops the general theory 
of fluid levitation when internal flow can be neglected, and it is shown that equilibrium 
can be determined by means of a variational principle involving gravitation, surface 
tension and magnetic energies. This principle is used to determine the shape for the 
special case of the cylindrical geometry. Finally, in $ 6, the dynamics of the turbulent 
flow within the levitadd sample is considered; a uniform eddy viscosity is assumed, 
and a simple low Reynolds number analysis is used to give a first indication of the 
structure of the mean flow. 

2. Order-of-magnitude considerations 
A number of metals that have been melted in the levitated state (Peifer 1965) are 

listed in table la, together with some relevant physical properties (Smithells 1967). 
The masses levitated in useful contexts are generally in the range 1-lOOg, and the 
typical span L of the levitated drop is generally in the range 5-30 mm. 

We suppose that currents in the external coils produce a magnetic field 

B = Re (B(x) eiwt). (2.1) 

6 = (2wpou)-4 (2.2) 

For large w ,  this penetrates a small distance O(6) into the drop where 

where u is the electrical conductivity of the drop, and po = 47r x lo-' (SI units). We 
suppose that 

s 4 L. (2.3) 

Table l b  includes values of 6 for w/277 = lOSHz, and it will be clear that (2.3) is 
normally satisfied at frequencies of this order of magnitude. 

Under condition (2.3), the field B(x) in (2.1) is determined by the equations 

VAB = p, J(x), V .  B = 0, (2.4) 

where Re (J(x) eiwt) represents the current that is concentrated in the external coils; 
the boundary conditions (to leading order in 6/L)  are 

B . n = O  on S, B = O ( r 3 )  at co, (2.5) 

where S is the surface of the drop. B is clearly uniquely determined. If B = B, on S 
(where B, is a tangential field) the mean magnetic pressure on S is 

and, as indicated in $ 1, it is essentially this pressure field which must support the 
sample. In  order of magnitude, we must have 

PML2 mg, (2.7) 

where m N L3p is the mass of the sample; equivalently, if B, is a typical magnitude of 
IB,l, then, from (2.6) and (2.7) 

BlllOlOP)~ - (gLP, (2.8) 
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T, 10-ap 
Metal "C kg/ma 

A1 660 2.37 
cu 1083 8.24 
Ga 29.8 6.10 
In 157 7-03 
Li 180 0.508 
Pb 327 10.6 

106a h 10% 10% 
n-lm-1 m&/s m*/s m*/s 
5.00 0.159 3-58 1.9 
4.74 0.168 3-23 0.55 
3.87 0.206 1-35 0.33 
3.02 0.264 2.17 0.24 
4.17 0.190 2.14 1.9 
1.05 0.758 1.01 0.25 

lo-%, lO-SL, Y 
J/kg/"C J/kg N/m 
10.84 3-88 0.915 
4.94 2.04 0.135 
4-08 0.80 0.735 
2.74 0.28 0.559 
42.3 4.16 0.398 
1.52 0.23 0.480 

TABLE la. Physical properties of some liquid metals at (or just above) the melting point Tm 
(from Smithells 1967, converted to SI units); p = density, u = conductivity, A = (,u0u)-l, 
K = thermal diffusivity, v = kinematic viscosity, c, = specific heat, L, = latent heat of fusion, 
y = surface tension. 

d 
= (h/2w)i 

Metal nun 
A1 0.5 
c u  0.5 
Ga 0.6 
In 0-7 
Li 0.6 
Pb 1.1 

BO 
=(CLoPBLS 

T 
0.02 
0.03 
0.03 
0.03 
0-008 
0.04 

q J  
=psLh/d 

J/ms/s 

7.5 x 1oL 
2.7 x lo" 
2.2 x lo" 
2.9 x lo6 
1.8 x 10' 
7.3 x 106 

6 
qJ/pLj 
-1s 
0.08 
0.16 
0.45 
1.5 
0.08 
3-0 

tm 
=PLc8 Tm/qJ 

8 

230 
170 

11 
14 
7 

3.4 

t k  

8 

= LS/K 

2.8 
3.1 
7.4 
4.6 
4.7 
9.9 

tmdt 
= L/; 

8 

125 
62.5 
22 

6.6 
125 
3.3 

hnw 
= (L'hV/dL,)t 

111111 

1-98 x lo-* 
4.5 x 10-2 
5.2 x 
6.9 x lo-' 
5.2 x 
9.1 x 10-2 

TABLE 1 b. Deduced orders of magnitude for levitation of the liquid metals of table 1 a, 
with w = 27rx 106Hz, L = 10mm. 

2.6 

8.3 

1.3 

61 

13 

22 

i.e. the Alfv6n velocity must be of the same order as the 'free-fall' velocity (gL)) if 
levitation is to occur. 

Let us now suppose that the flow inside the drop is characteriaed by a typical 
velocity u,. We may then expect dynamic pressure variations of order put, and an 
upper limit on u, is given by the condition 

(2.9) 

since otherwise centrifugal forces would lead to fragmentation of the drop. The mag- 
netic Reynolds number RIM = p,, uu, L then satisfies 

P 4  s P M  - PLg, 

RAI 5 Pu,4Lg)% (2.10) 

i.e. RaI 5 0-1 for the fluids of table 1 with L 5 30mm. This means that the field B and 
current j in the fluid volume V may be calculated neglecting the fluid motion, i.e. as if 
the sample were solid. 

The Lorentz force in the surface layer has a mean part - 
F = +Re(]* A B), (2.11) 

and an oscillating part of frequency 2w. The latter has a negligible effect when w is 
large, the response being limited by fluid inertia (aided by viscosity). We can therefore 
focus attention on the mean part (2.11). Boundary-layer methods (Sneyd 1979, 
particularly equations (2.17), (2.19)) show that, to leading order in 6/L, 

- 
F = 2&-1pMe-2wldn, (2.12) 

V A F = - 2 ~ ( n  A vpM)  e-2w/8, (2.13) 
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where w is the distance from S in the direction of the inward normal n. Integrating 
(2.12) and (2.13) across the magnetic boundary layer shows that the net effect of the 
Lorentz force is to provide (i) a surface pressure distribution pL,I (as expected) and 
(ii) a surface source of vorticity - n A VpAII. The surface pressure controls the shape of 
the sample and provides the levitating force, while the surface source of vorticity 
generates a rotational flow within the sample. 

Let us first obtain some orders of magnitude that would follow from an assumption 
that the velocity field u(x) is laminar and steady; it is purely meridional in the axi- 
symmetric configuration of figure l a, and two-dimensional in the configuration of 
figure 1 b; in either case the streamlines are closed. The Navier-Stokes equations may 
be written in the form 

W A U+V(*U2+pfp+g.X) = P-lF-VVAW, (2.14) 

where w = V A u, and integration round any closed streamline C gives 

(2.15) 

where A is a surface spanning C. This equation provides an estimate for uo; for suppose 
that C passes partly through the magnetic boundary layer and pertly through the 
fluid ‘core’, and let u0 - uo/L be a typical value of 101 ; then within the surface layert 

(V A WI N oo/S,  (2.16) 

(whereas in the core region, J V  A 0 1  - wo/L), and (2.15) provides the estimate 

(2.17) 

The corresponding Reynolds number is 

R = uoL/v - gL2S/v2, (2.18) 

and this is generally very large for L - 10 mm or greater. With v N 10-6nie/s (see 
table 1) and with L N 10 mm, 6 N 1 mm, we find R N lo6 ! Flow at such large Reynolds 
numbers is of course likely to be unstable; the assumption of steady laminar flow there- 
fore appears to be untenable. 

Suppose then that the interior flow is turbulent, with bobh mean and fluctuating 
parts characterised by velocity scale u, (which is of course no longer given by (2.17)). 
The force P will then be balanced primarily by the gradient of Reynolds stresses of 
order pu;; (2.15) is then replaced by 

(2.19) 

t This estimate should be contrasted with the corresponding situation in a layer on a rigid 
surface, within which 1 V A u I N u0/& I V A 0 1 N u,/S* N o, LIP.  Mestel (1981) ha.. arrived at 
the =me estimate (2.17) through consideration of the rate of work of the force field F. 
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FIGURE 2. (a) Plan view, (b)  cross-section, of levitated torus. 

where u' is the turbulent velocity; this gives an estimate pui - q / p o ,  or using (2.8), 

uo - (9LP. (2.20) 

This estimate is much less than the estimate (2.17); it  is moreover (just) consistent with 
the limit (2.9) set by the requirement that dynamic pressures be 'contained' by tho 
magnetic pressure at the surface. It seems therefore that turbulence limits the level of 
internal velocity to the ' free-fall ' scale, which is in any case maximal for ' containment ' 
purposes. The associated Reynolds number is R - 3000 (again using the data of 
Table 1). 

As regards modelling the turbulence in this complicated context, it  seems unlikely 
that one can do better (in the first instance) than assume a uniform eddy viscosity 
vT - u,L, the associated Reynolds number R, = uoL/v, being then (by definition) of 
order unity. A low Reynolds number analysis of the mean flow should then give a 
qualitatively correct description, and this is the procedure we shall adopt later (see $6). 

The possible presence of turbulence within the levitated drop is of great practical 
importance, as it will play a crucial role in mixing melt constituents and yielding a 
homogeneous product - one of the frequently quoted merits of the levitation-melting 
process (see, for example, Peifer 1965). Experimental evidence for the presence of 
turbulence is limited to observations of random ripples on the surface of levitated 
samples (Block & Theissen 1971 ; Stephan 1975); it seems likely that such ripples are 
simple surface perturbations associated with sub-surface turbulence) which cannot be 
directly detected. 

3. Levitation of a solid circular cylinder by equal parallel currents in phase 
We first consider the levitation and stability characteristics of the configuration of 

figure 1 b, wherein the levitated body is a cylinder of circular cross-section (for the 
moment, assumed solid). The solution to the external field problem (2.4), (2.5), is then 
easily solved by the method of images. With the notation of figure 1 b, the image system 
for currents I cos wt a t  P and Q are currents - I  cos wt a t  the'image points P', Q', and 
(possibly) a current Il ( t )  a t  the centre of the cylinder. The total current flowing along 
the cylinder is then 

Itot = I, - 21 cos wt. 
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For the case of a cylinder that is curved in the form of a torus 5-with R B a (figure 2 a ) ,  
I, is in fact zero for the following reason.? Consider the flux 

Q, = j s€3 .dS ,  

where S,  spans the curve C in figure 2a, passing along the axis of 9. Since B x 0 
inside Z we have equally 

Q, = lB0,B.dS, 

where C’ is a circle on the surface of 7, as shown. Now 

d@/dt = - E.dx = 0, 
fc 

since E x 0 in% and so Q, = 0 (all fields being periodic). Now, for large R, using B well- 
known formula for the mutual inductance of two circles, 

cDxpoRIcoswt ln-+ln- +poR j ln  - d S ,  ( d”, d”3 L (3 
where d,, d2, d are defined in figure 2 b; hence, letting R + co, with d,, d2, d fixed, we have 

21cosot+/Ajds = 21coswt+It,, =I, = 0, (3.1) 

as stated above. 

Vertical equilibrium and stability 
The lift force on the cylinder can be most simply calculated as the force on the image 
line currents, and has an average vertical component Fv given by 

where (figure 1 b) k = a/c,  7 = H / c  and the angles a, /3 are as indicated in figure 4(a)  ; 
hence 

Figure 3 shows graphs of G(7, k )  against 7 for various k.  The behaviour of B depends on 
whether k c 1 or k > 1 ,  i.e. on whether the cylinder diameter is smaller or greater than 
the gap between the wires. When k < 1 ,  G attains a maximum, at  q = ql (k)  say, and 
when k > 1 ,  G tends to infinity as q + (k2- 1)) at which point the cylinder is in contact 
with the wires. 

Vertical equilibrium is given by F, = mg where m is the cylinder mass/unit length, 
or from (3.2), 

and the equilibrium is vertically stable provided 

G(7,  k )  = 2nmgc/po I2 = W say, (3.4) 

ac/q c 0. (3.5) 

t For a straight cylinder of finite length, Itot = 0 and so Il = 2Icos wt. The levitation force 
pex unit length of cylinder is much lees in this c88e than for the case of a torue. 
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G 
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W 

1 

FIGURE If k < 1, the 
equation G(7, k) = W can have two solutions; one of these (8) represents a vertically stable 
equilibrium and one (U) an unstable equilibrium. If k > 1, there is one stable equilibrium (T). 
The vertical dashes r e p m n t  the maximum value of 7 for horizontal stability. 

The function Q(7, k), given by equation (3.3), for various values of 

For any given W ,  when k > 1, there is evidently a unique solution of (3.4) and this is 
stable; when k < 1, there are two solutions of (3.4) for 7, but only the larger value 
satisfying 

represents a position of stable equilibrium. 

'I > 'Il(k), (3.6) 

Horizontal stability 
If the cylinder is displaced horizontally through a distance 8 (figure 4a), then the 
horizontal component of force on the cylinder due to the line current at P (which tends 
to restore equilibrium) is given by 

The condition for horizontal stability is (dFH/ds),,o > 0, or, from (3.7), after some 
calculation, 

'I < (1+k2)a = t 2 ( k )  say. (3.8) 

When k < 1, stable equilibrium is possible only if 

rll(k) < 'I < 712(k), 

w, > w > w2, 
or equivalently if 

(3.9) 

(3.10) 

where W, = G(q2, k) .  Table 2 lists ql ,  v2, W, and W, for 0.05 < k < 0.95. The range 
W, - W, of possible cylinder weights is extremely narrow for k 5 0.8, but widens rapidly 
for larger k. On the curves of figure 3, the point ')I, is marked by a vertical dash. 
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k WI 
0.05 1.00000 
0.1 1.00001 
0.16 1~00006 
0.2 1.000 19 
0.25 1 -000 46 
0.3 1.00094 
0.36 1.001 69 
0.4 1 -002 82 
0.45 1.00441 
0.5 1.00657 
0.56 1 -009 43 
0.6 1.013 17 
0.65 1*01801 
0-7 1.02432 
0.75 1.032 74 
0.8 1.04479 
0.85 1.068 65 
0.9 1.20086 
0.95 1.618 32 

wil 
l-OOO00 
1-OOOo1 
1*OOO06 
1-OOo 19 
1.000 46 
1.00093 
1.001 67 
1.002 76 
1.004 26 
1-00623 
1.008 74 
1.011 84 
1-01557 
1.019 94 
1.025 
1-03075 
1-037 19 
1-04433 
1-052 16 

a1 

1.001 21 
1,00489 
1-01093 
1-01901 
1.028 89 
1.04027 
1.052 68 
1.065 '7 
1.07877 
1.091 35 
1.10267 
1.11168 
1.11684 
1.11552 
1.102 17 
1.06043 
0.814221 
0-484 192 
0.319 122 

as 
1.001 25 
1.004 99 
1.011 19 
1.0198 
1.03078 
1,04403 
1.059 48 
1.07703 
1.096 59 
1.11803 
1.14127 
1.166 19 
1.19269 
1.22066 
1-25 
1.28063 
1.31244 
1.34536 
1.379 31 

TABLE 2. Stability bounds for a levitated cylinder, &B a function of the geometrical parameter k. 

If k 1, the sample will clearly become unstable when it melts (see 55 below and, 
particularly, figure 8); only values of k of order unity are therefore of practical interest, 
and for this reason we have restricted attention to the range 0.5 < k < 1.5 in subsequent 
computations. 

Magnetic pressure distribution 
It is a straightforward matter to calculate B, and hence pfii on the cylinder surface. 
In  the notation of figure 4 b, we find 

where 

and 

(3.11) 

(3.12) 

l8 , (3.13) f ( e )  = (' -K2)2 [ 1 + K s -  2Kcos (&a) + 1 + K2- 2K cos (O+ a) 
1 1 

with K = k( 1 + q2)+, a = cot-1 7. The corresponding expression for - n A VpM (which 
appears in (2.3)) is 

-n A Vpnf = a-lparof'(@ft, (3.14) 

where 2 is a unit vector along the cylinder axis. The function f(e) which plays an 
important part in the subsequent theory, is shown in figure 5 for various values of the 
geometrical parameters k and q.  

T h e w e k  = q = 1 

This case will be useful by way of example. With k = 7 = 1, we have K = 2 4  and 
a = an. From (3.3) and (3.4), this is a possible equilibrium if W = G(1, 1) = 3, and 
i t  is stable. The function f(e) given by (3.12) simplifies in this case to 

(3.15) 
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(a)  ( b )  

FIGURE 4. The levitated cylinder; (a) construction for determining horizontal stability; 
( b )  notation for determination of p&9) on the cylinder surface, and the etreamfimction $ (96). 

0 e 
FIGURE 6. The functionf(8) for various values of k and 9. 

4. Flow in a surface film of molten metal 
4.1. General considerations 

In this section, we study the initial stages of melting, the intermediate phase between 
solid and fluid levitation, when the solid is covered by a layer of molten metal so thin 
that viscous forces dominate and the methods of lubrication theory can be employed 
(see figure 6). 
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w = h  w = o  

FIGURE 6. Notation for the thin film analysis of 34. 

The mean rate of Joule heating per unit volume is 

PIu = e-aWla/ ,uiPu,  

and so the mean rate of Joule heating per unit surface area (or equivalently the flux of 
electromagnetic energy through the surface) is 

/o*T/cTdW = B g / 2 d ~ d  = qJ, Say. (4.1) 

In  order of magnitude, using (2.8), we have 

qJ - PgLAI8. (4.2) 

Now the total heat supplied per unit time is -LaqJ, and, provided the variation in 
temperature throughout the sample is not too great, this is of order @Ls) c,AT, where 
AT is the increase in temperature in unit time and c, is the specific heat of the metal; 
hence the time t, to raise the temperature from 0 "C to the melting point T, is 

tm PLcsTm/qJ* (4.3) 

This is compared with the diffusion time t, in table 1 b; for the best conductors, t, % t,, 
and for the others, t, and t, areof the same order of magnitude. This means that thermal 
diffusion is generally strong enough to spread the heat fairly uniformly through the 
sample during the melting process. Once melting begins, the rate of advance of the 
liquid/solid interface is 

8 - qJ/PL,, (4.4) 

tme1t - LIQ (4.5) 

where L, is the latent heat of fusion, and the time to complete the melting is 

(see also table 1 b). 

the layer (in the lubrication approximation) is 
Using the expression (2.12) for P, the normal component of the equation of motion in 

(4.6) - @/aW + (2pM/6) e-aWlb +pg . n = 0. 
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Here, by virtue of (2.8), the gravitational term is smaller by a factor O(B/L) than the 
magnetic term and may be neglected. Since p = 0 on w = 0 (neglecting a surface 
tension contribution), 

p = p M ( 1 - e - 2 w / a ) .  (4.7) 

k: 2(w/6)I)M, (4.8) 

If the layer thickness h is small compared with 8, then (4.7) gives 

while, if h 9 8, p k: pM throughout the fluid layer except in the magnetic skin. 

the same lubrication approximation) 
Substitution of (4.7) in the tangential projection of the equation of motion gives (in 

pv (8su/aWs) = (1 - e-swla) VspM -pg,, (4.9) 

where g, = g - n(g . n), V, = V - n(n . V). The solution of (4.9) satisfying u = 0 on 
w = h and 8 u / h  = 0 on w = 0 is 

1 u = -  (h2- ws) g, +- [2(h - w) (6 - w - h) - 82(e-2w/u - e-8h/a)] VspM, (4.10) 
2v 4PV 

and the corresponding flux Q in the layer is 

(4.11) 

where 

The two limiting cases mentioned above correspond here to the limiting behaviour 

(4.13) 

Allowing now for the advance of the liquid/solid interface due to melting, the fluid 
conservation equation takes the form 

(4.14) 

It is clear that, when his sufficiently small, the melting term in (4.14) dominates, and h 
grows in proportion to pM. When 1 = O(hm), where 

h, = (L”v/L, a)), (4.15) 

the melting and convection terms in (4.14) are of the same order of magnitude; and 
when h & h,, the convection term V .Q dominates; h,, is generally in the range 0.01- 
0.1 mm (see table lb). 

There is of course also an upper limit on h for the validity of the lubrication 
approximation. From (4.11), the flux within the layer is of order hSg/v, and 
the Reynolds number is then - h3g/v2. The lubrication approximation requires that 
(hSg/vB)(h/L) 5 1, i.e. 

h 5 (LvS/g)3 = h, say. (4.16) 
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For the typical liquid metals of table 1, this gives the astonishingly low estimate 
h, N 0.1 mm! It is hard to believe that inertial effects could become important for 
h 5 1 mm, and yet this does seem to be an inevitable consequence of the very small 
kinematic viscosity of liquid metals. 

It follows from these orders of magnitude that, for so long as lubrication theory is 
valid, the approximation h 4 6 is also likely to be satisfied, and then (4.11) becomes 

(4.17) 

Here, the magnetic effect is small compared with the gravitational effect, and the layer 
simply drains under gravity as soon as it is formed, the levitating force being located 
predominantly within the solid metal. 

This conclusion is rather uninteresting from a fluid dynamical point of view. A more 
interesting behaviour can however arise if the field frequency is increased to the point 
at which 8 4 h, when (4.11) becomes 

(4.18) 

Now the magnetic pressure term competes with gravity on an equal basis in deter- 
mining the film evolution. 

4.2. Surface layer in the levitated cylinder 

This behaviour is well illustrated by the case of the levitated cylinder, for which p2,1 is 
given by (3.14) and (3.15). Hence from (4.11), the flux Q(0) in the layer is given by 

(4.19) 

(4.20) 

from which the evolution of the film may be computed. 
For the particular case k = 7 = 1, (and W = Q), using (3.13), (4.15) becomes (with 

(4.21) 

When h 9 S, so that F(h/6 )  N 1, this flux is positive for ,U > 0.108 (i.e. for 181 < 83-80), 
and it is negative for 181 > 83.8O. The fluid in the layer is then driven by the combi- 
nation of magnetic pressure and gravity towards the points 8 = & 83.8O. Obviously 
the layer thickness builds up according to (4.20) in a neighbourhood of these points 
until lubrication theory ceases to be valid. 

5. Magnetostatic analysis 
5.1. General considerations 

In  this section, we shall obtain some exact results concerning the shape of a levitated 
drop, under the assumption that effects associated with the interior motion may be 
neglected; the shape is then determined by a static balance between gravitational, 
surface tension and magnetic forces. 
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In  the fluid core, where P = 0, the pressure is hydrostatic, i.e. 

P = pO-Pgx, (5.1) 

where x is vertically upwards and po is constant. In  the magnetic boundary layer 

(5.2) I, = pM( 1 - e-2LDls) + YK,  (cf (4.711, 

where we now include the effect of surface tension y ;  K is the sum of the principal 
surface curvatures. Since (5.2) tends to (5.1) as w / S +  00, we obtain the nakural 
boundary condition on S,t 

yK+pJf+pgx = cat. on 5. (5.3) 

We now aim to convert (5.3) into a variational principle, which will be useful for the 
computation of stable equilibria. This principle involves the energies 

associated with the gravity, surface tension and magnetic field.$ where A, is the area 
of 5, and P is the exterior domain. Suppose that the surface S is perturbed by a small 
amount 6hn subject to the constraint that the volume of liquid remains constant, i.e. 

n n 

8 d7= ShdS=O, J y  J, (5.5) 

and subject also to the condition that the currents in the external coils remain a t  
constant amplitude. Then the associated changes in U, and Uy are 

I SU, = pgXShdS, 

SU, = $4, = y I R  KShdS, 

s, 
. -  

and the change in U, is 

SU,, = -IsG 1 IB12ShdS+Re/7GB*. 1 SBd7. 

Now let B = B, + B,, where B, is the field due to the currents in the external coils in 
the absence of any levitated material (so that SB, = 0), and B, is the field due to the 
induced currents in V ,  so that VAB, = 0, i.e. B, = V$2 say, in P. Then 

Ii.B*. 6Bd7 =I B*.V$,d7 = 
P 

=/,(n.B*)$,dS = 0, 

t With B = Vg5 and p~ = (4p0)-1(Vq5)P, (6.3) is identical with the dynamic boundary con- 
dition at the free surface of a steady incompressible irrotational inviscid flow with velocity potential 
#, provided (4pJ1 is identified with (&)-I. In both cases, q5 is a harmonic function satisfying 
a#/an = 0 on S; but when Q represents a velocity potential, its domain is the interior of S, 
whereas in the magnetic case its domain is the exterior. 

$' To get a finite value for Unl, the distribution of current in the external coils must be regarded 
as continuous, so that the sources for B are not singular. Alternatively, the singular part can be 
subtracted out, aa done later in $6.3. 
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SU,, = -JspM ShdS. (6.8) 

It follows from (5.6) and (5.8) that 

SCU, + u, - u,) = (yrc +p, +pgx) 6h as. (5.9) 
JS 

Hence the boundary condition (5.3), together with the constraint ( 5 4 ,  implies that 

S(U,+ u, - U,) = 0, (5.10) 

and conversely, the variational statement (5.10), subject to ( 5 4 ,  implies (5.3). 
Note the appearance of the minus sign in (5.10): the variation in the total energy 
(U, + U, + U,) is not zero, but is equal to 26U;,,, the work done in the external circuits 
to maintain currents of constant amplitude. 

Note also that the principle (5.10) holds also for a solid levitated body, with U, = 0. 
It has been used in this form by some authors (e.g. Hatch 1965) to analyse positions of 
equilibria; but the above proof applied to general fluid equilibria appears to be new.? 

5.2. The 1evitatedJluid cylinder; strong surface tension 

For the levitated cylinder problem, we may f i s t  obtain an analytic indication of the 
equilibrium shape, by supposing that surface tension is strong so that the cross-section 
is approximately circular. Specifically, let 

mgly = 8 < 1, 

and let the equation of the cylinder surface$ be 

(5.11) 

(5.12) 

the n = 1 term being omitted since this corresponds simply to a vertical displacement 
of the centre. The cross-sectional area is 

and so, in the linearized analysis that follows, we may take a, = a. 
Inequation (5.3), using (3.11) and (3.12), 

(5.13) 

(5.14) 

t A variational principle analogous to (6.10) has been established by Brancher & Sero 
Guillaume (1981) in the context of a ferromagnetic fluid subjected to a static magnetic field, and 
under the influence of gravity and surface tension. 

$ A fluid cylinder, levitated in the manner envisaged here, might be subject to longitudinal 
instabilities ; these could presumab1.l be stabilized by the application of a sufficiently strong 
longitudinal high frequency field, as in analogous plasma contexts; for present purposes we 
ignore them. 

An approximation of the form ( f i l l ) ,  (6.12) has been adopted also by Mestel (1982) in an 
investigation of the effect of interior motion on free Burface shape. 
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a3 a3 a3 a3 

(4 ( b )  

FIGURE 7. Cross-sectional shapes of levitated molten cylinder. (a) Calculated by perturbation 
procedure: ... k = 0.6, 7 = 1-1, E = 16; ---- k = 0.6, 71 = 1.1, E = 32; ---k = 0.8, 
7 = 1.2, E = 15; k = 0.8, 7 = 1.2, E = 30. (a) Calculated numerically using variational 

W = 1.096. 
principle: (k = 1) - r = 1, w = 1.07; - _ _ _ _  r = 0.3, w = 1.081; --- r = 0.1, 

and the curvature K is given by 

1 m 
= a-1 I+S (ne- 1)ancosnO+O(s2) . ( n = 2  

Hence, to order B, (5.3) gives 

If we now expandf(0) as a Fourier cosine series 

then, from (5.18), 
.fn 

8nkW(ne- 1)' 
a, = - (n = 2,3, ...). 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

A numerical method was used to calculate the f,, and hence to obtain the surface 
perturbation for various values of k and T,I ( W  being given by (3.3), (3.4)); figure 7a 
shows cross-sections calculated in this way. The effect of magnetic pressure in the 
regions closest to the line currents is quite evident. 

5.3. The levitated Jluid cylinder; weak surface tension 

When surface t,ension is weak, the perturbation from circular shape will be large, and a 
numerical method must be adopted. We shall use the variational principle (5.10) to 
determine the shape. It is convenient also to adopt complex variable techniques. 

The plane of cross-section of the fluid cylinder is taken to be the complex z-plane 
and for convenience the x-axis chosen as the axis of symmetry. Applying the Riemann 
Mapping Theorem to the exterior of Sshows that there exists a unique analytic function 

3-2  
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&) which transforms the free surface S to the unit circle = 1 in such a way that 
~ ( C O )  = 00, ~ ( C O )  is real. The inverse function z ( c )  is also analytic and can be expanded 
as a Laurent series 

W 

z=C1C+co+ x c n p .  
n-1 

By symmetry the c, and C, are all real. 
Since the cross-sectional area inside S is fixed, 

B I m j  zdz = na2. 
S 

Substitution from (5.19) gives 

since c[ = 1 on S’, and evaluation by Cauchy’s Theorem gives 

W 

= a s +  x nct. 
n=l 

(6.19) 

(5.20) 

Our strategy will be to choose the c, as independent variables, and to express 
U = U, + U, - U,, in terms of these variables; Numerical minimization will determine 
the c,. 

Expression for U,: 

Substitution from (5.19) gives 

and evaluating the various trigonometric integrals 

7 T w  O0 
W W U 

2 =nGco-nc, x nc; -nCl lzcncn+l-p x (m+ 3n)~ ,c~c , , , , ~ .  
PS n=l n= 1 m = l  n=l  

(5.21) 
Expreasim for U,: 

where 1 is the length of S. It will not be possible to write an algebraic formula for 1 in 
terms of the c, - for example when c, = 0 for n >/ 2 then S is an ellipse and the expres- 
sion for the perimeter of an ellipse in terms of its major end minor axes involves elliptic 
integrals - so an approximate method must be used. 

u, = 71, 

Let r ( [ )  be an analytic function with a Laurent expansion 

(5.22) 

(5.23) 

such that 
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Substitution of (5.22) into (5.23) shows that the coefficients rn can be determined by 
the recursive scheme ro = @, rl = 0, 

00 

u,=27ryr, *. 
n = O  

ExpresSi.n for U,: 
(5.24) 

The field near each line current gives an infinite contribution to the magnetic energy, 
but these singularities can be removed by defining 

(5.25) 

where xr is the exterior of the cylinder excluding two circles of radius r centred on the 
line currents at P and &. If f(z) is the complex potential for B, then 

B = Idf/dzl, 
and the magnification of the conformal transformation from the z-plane to the [-plane 
is ld[/dzl so that if 5 = Q + ~ T  

-- 

Transformation of the integral in (5.25) gives 

(5.26) 

where 2;. is the region of the [-plane corresponding to A^, and r' the radius of the 
corresponding small circles around the line currents. Now 

Inr=Inr '+h(r / r ' ) j Inr '+InIdz /d [ l ,  as r+O, 

so (5.26) can be written in the form 

where U& is the magnetic energy of the field in the [-plane. This simple relation be- 
tween & and Uh is what makes a conformal transformation method so convenient. 
To calculate U,, the point P' in the [-plane, corresponding to P, was located by 

Newton iteration on the equation z, = z([,,); then Uh could be found by image 
methods. 

Minimization 
The series (5.19) was truncated after N terms, so that U = U(co, cl, . . ., cN) .  The series 

(5 .22)  was truncated after 15 terms, since retention of further terms had no effect on 
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N W,  : maximum W for stable levitation W, : minimum W for stable levitation 
3 1.043 26 1.03639 
6 1.042 89 1.03601 
7 1.042 84 1*03600 
9 1-042 84 1.03600 

TABLE 3. Convergence of results for increasing N ;  k = 0.8, r = 1.0. 

the results. The function U was minimised using the NAG subroutine E04DFF, which 
is based on a modified-Newton algorithm, and the calculations carried out on the 
University of Waikato Vax 111780 computer. The programme was checked by setting 
N = 0, which constrains the cylinder cross-section to be circular, and the results of 
table 2 were reproduced. Convergence was checked by running the programme for 
various N, and table 3 shows a typical set of results. For the bulk of the calculations, N 
was set equal to 4, in which case each minimization took approximately 3 seconds of 
C.P.U. time. 

Horizontal stability could be tested in a simple way. Only Uw is affected by a rigid 
horizontal displacement of the fluid cylinder, which is represented mathematically by 
the addition of a purely imaginary constant to (5.19). Since dz/d[ is unaffected, the 
stability depends only on the first term of (5.27) so the criterion for horizontal stability 
is just (3.8) applied to the (;-plane cylinder. 

The maximum W (dimensionless cylinder weight), for which levitation is possible, 
with fixed values of the other parameters, was determined by increasing W gradually 
until no minimum of U could be found. 

Results 

the cross-sectional area is na2, W = 2ncmg/,uo P, and 

r = n y c / , u o ~  = wIs, (5.28) 

which provides a dimensionless measure of surface tension relative to magnetic forms. 
Figure 7 b shows three cross-sections (for k = 1.0) which show the effect of decreasing I?. 
When J? = 1 the perturbation from the circular shape is still small, and as I? decreases 
the change in shape is qualitatively similar to that predicted by the linear theory of 
$5.2. 

For given k and r, there is a range of values of W over which stable levitation can 
occur, the width of this range increasing to a maximum as r tends to infinity (at which 
point the results are the same as for the rigid cylinder). Figure 8a shows stability 
boundaries in the range 0 < I' < 1 fork = 0-7,1*0 and 1.5. Fork < 0.788stablelevitation 
is possible with I' = 0, but for k > 0.788 it is possible only if I? > I?&) (see Figure 8b). 
If I' < r,(k) the lateral spread becomes so great that the fluid in effect spills over the 
edges of the magnetic well; k then decreases to the value k, a t  which r,(k,) GZ I? and 
surface tension can then just retain the sample within the stability limit. 

The lower stability limit for W is determined by the horizontal stability criterion 
referred to above. If W is decreased (by decreasing m, keeping other parameters fixed), 
the sample rises until criterion (3.8) (adapted to the C;-plane) is violated. 

The dimensionless parameters which can be independently varied are k = a/c, where 
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k = 0.7 n / 1.04418 
' 1.04470 

65 

0.778 1 .o k 1 -5 
(b)  

FIGURE 8. (a) Regions of stable levitation for k = 0.7, 1.0, 1.6. Note the different vertical scale 
in each diagram. (b )  Graph of rm(k); stable levitation is possible if I' > rm(k). 

6. Fluid motion in the levitated cylinder 
In  order to obtain some qualitative understanding of the motion within the cylinder, 

we shall ignore the departure of the cylinder cross-section from a circle (a procedure 
that is strictly justifiable only if surface tension is strong, i.e. I' B 1). From (3.14) the 
surface vorticity generation is, in the cylindrical geometry, a-1pM,,f'(8), the function 
f (8) being as shown in figure 5, for various k. There are apparently two distinct possi- 
bilities: (i) if k is small, f(S) decreases monotonically from 8 = 0 to 8 = n, so that the 
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sign of vorticity generation does not change in this interval; (ii) for larger k, f(e) 
reaches a maximum at some intermediate point, where the vorticity generation there- 
fore changes sign. One would expect the resulting fluid motion to consist of two eddies 
in case (i), and four in case (ii), as is in fact found (see figure 9 below, which shows only 
the right-hand half of the flow domain). 

We have argued in 9 2 that the flow is likely to be turbulent when L N 10 mm and 
greater, and that a uniform eddy viscosity vT - uo L may then provide the dominant 
mechanism of momentum transfer. The Reynolds number based on vT is of order 
unity, and a low Reynolds number analysis is likely to give a reasonable qualitative 
description of the mean flow. This, a t  any rate, is the approach we now adopt.? 

The streamfunction $(r,  0 )  of the mean flow then satisfies the (inhomogeneous) bi- 
harmonic equation 

The circle r = a is a streamline on which the tangential stress vanishes, and so 

a"$ l a $  
$ = O ,  - - - -=O on r = a .  

ar2 r ar 

Now the right-hand side of (6.1) is significant only within the magnetic boundary layer, 
within which V4 w a4/ar4, and so a particular integral of (6 . l ) i s  

the general solution (with appropriate symmetry) being 

$ = n= 5 1 (A,,(%)"+ Bn (5)"'") sinno. 

The boundary conditions (6.2) then determine the coefficients A, and B,, in terms of 
the Fourier coefficients f, off (0) (see 5.17). Retaining only leading order terms in the 
small parameter &/a, the solution for (a - r ) / S  1 is 

where R = r/a.  

conjugate series 
The series in (6.5) may actually be summed ! To do this, consider first the complex 

m 

for which, from (5.19) and (3.11), 

E( 1 , O )  = f(0) = ( P  - (r;2 + ri2)". (6.7) 

It can be shown by elementary trigonometry that on the circle r = a, 

t This is to be contrasted with the approach of Mestel (1982) who uses numerical methods to 
determine the corresponding laminar flow in a sphere a t  high Reynolds number. 
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e = o  
(a) ( b )  

FIGURE 9. Streamlines $ = cst. where $ is given by the low Reynolds number solution (6.13); 
(a) k = 0.5, 7 = 1.1; (b )  k = 0.95, 7 = 1.0. 

where ri, ei are defined in figure 4b, and that 

(6.9) 
COS el COS e, 

rl r2 
where 

Co = - (P- azcos 2a)/C4, C, = 1(Z2 + a2 - 2a2 cos 2a)/C4,} 

C, = (12 - a2)2/C4, C4 = 2( Z4 + a4 - 2a2Z2 cos 201). 
(6.10) 

Substitution of (6.8) and (6.9) in (6.7) gives 

= Wl, TZ, e,,e2), say, (6.11) 
where 

(6.12) 
D, = 8Z(C,1-1)+413/(Za-~2), 

Do = 4 +  8Z2Co-4Z2/(Za-aa). 

Since E(R,  0)  and V are both harmonic in R < 1 andequal on R = 1 ,  they must be equal 
throughout R c 1. The complex conjugate of (6.11) is obtained by replacing cosines 
by sines; hence (6.5) may be written 

$ ='&(l-R2) [ 212 ("i".,2e1 T+-) sin2e, + D l ( T + - )  sine, sine, 

8PVT 4 9-2 

+Do] .  (6.13) 
sin (el + e,) 

+ D2 rl r2 

Figure 9 shows streamline patterns for two values of (k, r ) ,  which have the structure 
anticipated from the argument based on the sign of vorticity generation. However, 
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FIQURE 10. Graphs of f’(0) and the surface velocity Vs(0)  : (a) k = 0.5,q = 1.1 ; (b )  k = 0.76, 
9 = 1.2; (c) k = 0.96, 11 = 1.0. Note that the zero of T’, is displaced towards B = 0, relative to 
the zero off’(0). 

the point a t  which the surface velocity 

v, = a-l(a$/aR)R,,, (8.14) 

changes sign does not quite coincide with the point wheref’(8) = 0 (figure 10) but is 
slightly displaced towards 8 = 0. 

7. Discussion 
*he results of §§ 3,6 and 6 show the feasibility of levitating a two-dimensional liquid 

metal cylinder in the magnetic field due to parallel line currents in phase, which can 
be thought of as representing in cross-section a fluid torus levitated by two circular 
line currents (figure 2a). This geometry avoids the crucial difficulty associated with 
practical levitation devices, viz thLt surface tension is necessary to prevent fluid from 
leaking through the lower neutral magnetic-field point; and indeed we have found that 
levitation is possible with zero surface tension, and that there is (in principle) no limit 
to the mass of liquid metal that can be levitated with a sufficiently high current. An 
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immediate qualificatjon is however appropriate: although this system can be made 
stable with respect to perturbations in the plane of cross-section, it would be subject 
to longitudinal instabilities due to surface tension (which would tend to divide the 
torus into drops) and due to the tendency of the torus to sink lower into the magnetic 
field a t  any point where the cross-sectional area was increased by longitudinal inflow. 
Nevertheless such instabilities could be eliminated by the application of a sufficiently 
strong longitudinal magnetic field- the same technique that is used to eliminate the 
plasma pinch instability- and a toroidal levitation device could probably be made to 
work. 

There are however a number of obvious imperfections in the analysis that we have 
been able to develop. Firstly, the shape calculation was based on the variational 
principle (6.10) which is valid only if dynamic pressure effects are negligible. A com- 
plete solution of the problem clearly requires inclusion of dynamic pressure in (5.1) and 
this requires solution of the dynamical problem within a free surface that is strongly 
distorted by magnetic pressure - a formidable problem even if the flow were known to 
be laminar. Secondly, accepting that the flow is likely to be turbulent, there is the 
problem of improving significantly on the assumption of uniform eddy viscosity, 
adopted in 5 6. A similar problem of turbulence modelling in flows with closed stream- 
lines driven by rotational forces arises in related contexts (see, for example, Hunt & 
Maxey 1980), but we appear to be still far from an adequate solution. Of course, the 
normal component of fluctuating velocity falls to nearly zero (exactly zero if surface 
ripples are ignored) at the free surface, and so a decrease in eddy viscosity near the free 
surface is to be expected. This effect should perhaps be incorporated in a more realistic 
analysis. 

Finally, there are questions of global stability associated with the fact that in 
practice it is voltage, rather than current, that is generally prescribed in the external 
coils. Perturbations in the shape of the levitated sample lead to an associated pertur- 
bation in the mutual inductance between coils and sample, and 80 to the possibility of 
dynamic instability involving this coupling. 

All of these effects require further analysis in conjunction with experiments aimed 
a t  providing some detailed information concerning the velocity field within the sample 
and on its surface. 

This work was initiated at the School of Mathematics, University of Bristol, in 
1978/9 during&D.S.’s tenure of an S.R.C. Senior Visiting Fellowship, Grant no. GR/B 
04969. Professor M. R. Harris of the University of Newcastle-upon-Tyne drew our 
attention to the comprehensive study of Stephan (1975), and provided helpful criticism 
and comments which are gratefully acknowledged. 
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